3.715 \(\int \frac {x^2}{(a+b x^2) (c+d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=74 \[ \frac {x}{\sqrt {c+d x^2} (b c-a d)}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{(b c-a d)^{3/2}} \]

[Out]

-arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))*a^(1/2)/(-a*d+b*c)^(3/2)+x/(-a*d+b*c)/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {471, 12, 377, 205} \[ \frac {x}{\sqrt {c+d x^2} (b c-a d)}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{(b c-a d)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

x/((b*c - a*d)*Sqrt[c + d*x^2]) - (Sqrt[a]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(b*c - a*d)^
(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 471

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(n*(b*c - a*d)*(p + 1)), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx &=\frac {x}{(b c-a d) \sqrt {c+d x^2}}-\frac {\int \frac {a}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{b c-a d}\\ &=\frac {x}{(b c-a d) \sqrt {c+d x^2}}-\frac {a \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{b c-a d}\\ &=\frac {x}{(b c-a d) \sqrt {c+d x^2}}-\frac {a \operatorname {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b c-a d}\\ &=\frac {x}{(b c-a d) \sqrt {c+d x^2}}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{(b c-a d)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.38, size = 111, normalized size = 1.50 \[ \frac {x^2 (b c-a d)+a c \sqrt {\frac {d x^2}{c}+1} \sqrt {x^2 \left (\frac {d}{c}-\frac {b}{a}\right )} \tanh ^{-1}\left (\frac {\sqrt {x^2 \left (\frac {d}{c}-\frac {b}{a}\right )}}{\sqrt {\frac {d x^2}{c}+1}}\right )}{x \sqrt {c+d x^2} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

((b*c - a*d)*x^2 + a*c*Sqrt[(-(b/a) + d/c)*x^2]*Sqrt[1 + (d*x^2)/c]*ArcTanh[Sqrt[(-(b/a) + d/c)*x^2]/Sqrt[1 +
(d*x^2)/c]])/((b*c - a*d)^2*x*Sqrt[c + d*x^2])

________________________________________________________________________________________

fricas [A]  time = 1.04, size = 334, normalized size = 4.51 \[ \left [-\frac {{\left (d x^{2} + c\right )} \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \, \sqrt {d x^{2} + c} x}{4 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )}}, \frac {{\left (d x^{2} + c\right )} \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right ) + 2 \, \sqrt {d x^{2} + c} x}{2 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*((d*x^2 + c)*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 -
4*a^2*c*d)*x^2 + 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*
c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)) - 4*sqrt(d*x^2 + c)*x)/(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2), 1/2*((d*
x^2 + c)*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^
3 + a*c*x)) + 2*sqrt(d*x^2 + c)*x)/(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.46, size = 103, normalized size = 1.39 \[ -\frac {a \sqrt {d} \arctan \left (-\frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{\sqrt {a b c d - a^{2} d^{2}} {\left (b c - a d\right )}} + \frac {x}{\sqrt {d x^{2} + c} {\left (b c - a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

-a*sqrt(d)*arctan(-1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b*c*
d - a^2*d^2)*(b*c - a*d)) + x/(sqrt(d*x^2 + c)*(b*c - a*d))

________________________________________________________________________________________

maple [B]  time = 0.02, size = 653, normalized size = 8.82 \[ -\frac {a \ln \left (\frac {\frac {2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, \left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}+\frac {a \ln \left (\frac {-\frac {2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {2 \left (a d -b c \right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 \sqrt {-a b}\, \left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}-\frac {a d x}{2 \left (a d -b c \right ) \sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}\, b c}-\frac {a d x}{2 \left (a d -b c \right ) \sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}\, b c}-\frac {a}{2 \sqrt {-a b}\, \left (a d -b c \right ) \sqrt {\left (x +\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}+\frac {a}{2 \sqrt {-a b}\, \left (a d -b c \right ) \sqrt {\left (x -\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right ) d}{b}-\frac {a d -b c}{b}}}+\frac {x}{\sqrt {d \,x^{2}+c}\, b c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^2+a)/(d*x^2+c)^(3/2),x)

[Out]

1/b*x/c/(d*x^2+c)^(1/2)-1/2*a/(-a*b)^(1/2)/(a*d-b*c)/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)
/b*d-(a*d-b*c)/b)^(1/2)-1/2*a/b/(a*d-b*c)/c/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d
-b*c)/b)^(1/2)*d*x+1/2*a/(-a*b)^(1/2)/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*
d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)
/b)^(1/2))/(x+(-a*b)^(1/2)/b))+1/2*a/(-a*b)^(1/2)/(a*d-b*c)/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(
1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)-1/2*a/b/(a*d-b*c)/c/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b
*d-(a*d-b*c)/b)^(1/2)*d*x-1/2*a/(-a*b)^(1/2)/(a*d-b*c)/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)
/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*
d-b*c)/b)^(1/2))/(x-(-a*b)^(1/2)/b))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{{\left (b x^{2} + a\right )} {\left (d x^{2} + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2/((b*x^2 + a)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^2}{\left (b\,x^2+a\right )\,{\left (d\,x^2+c\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((a + b*x^2)*(c + d*x^2)^(3/2)),x)

[Out]

int(x^2/((a + b*x^2)*(c + d*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\left (a + b x^{2}\right ) \left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**2+a)/(d*x**2+c)**(3/2),x)

[Out]

Integral(x**2/((a + b*x**2)*(c + d*x**2)**(3/2)), x)

________________________________________________________________________________________